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Abstract: A review of the application of single particle hydrodynamics in models
for the exchange of interphase momentum in continuum models of multiphase
flow is presented. Considered are the equations of motion for a laminar,
mechanical two phase flow. Inherent to this theory is a model for the interphase

exchange of momentum due to drag between the dispersed particulate and conti-
nuous fluid phases. In addition, applications of two phase flow theory to
de-mixing flows require the modelling of interphase momentum exchange due to
lift forces. The applications of single particle analysis in deriving models for

drag and lift are examined.



I. Introduction

Before the advent of numerical approximation techniques, coupled with
large computational facilities the study of single particle hydrodynamics was
popular. Following the early conceptual efforts on theories of multiphase flow
[1],[2] investigations into the form of certain classes of phenomena were
undertaken. Specifically, those investigating the form for models of interphase
momentum exchange found a wealth of information by evoking the arguments
once used in single particle hydrodynamics. As an example, consider the follow-
ing quote [3], used in a context specific to arguments relating to forms of
momentum exchange models in continuum theories of multiphase flows:

"On the other hand, the terms ... and ... have no analogs in single particle
calculations and will be neglected."

It would appear that the application of single particle hydrodynamics in contin-
uum models of multiphase flow has received a degree of acceptance.

II. Continuum Theories of Multiphase Flow

Continuum theories of multiphase flow have developed along parallel lines:
Mixture Theory and the Theory of Interpenetrating Media with Moving Inter-
faces. Both approaches are rooted in the same fundamental assumption, namely:
That both the dispersed and continuous phases of the flow can be treated as and
described within an Eulerian kinematic framework by the conservation equations
of a macro-continua. Implicit in this assumption is that the variable fields of
each phase are unique and continuous over the flow domain. The limits of this

assumption for the case of dilute concentrations of the dispersed phase have been
explored [4] and the alternative of a Lagrangian or 'particle tracking' kinematic
scheme for the dispersed phase forwarded. In addition, continuum models have
been adapted to granular material flows [5] where the dispersed phase concentra-
tion approaches a maximum.

Mixture theories arise from the specialization of the classical field theory
requirements of internally consistent thermodynamic arguments [6],[7]. In
contrast, the theories of interpenetrating media address more directly modifica-
tions to the classical transport equations due to discontinuous or 'jump' conditions
at moving phase boundaries [8],[9],[10],[11]. To reduce to a local form, the
conservation equations resulting from the theories of interpenetrating media must
be averaged in either space or time. In fact, the key difference between the
mixture theory formulation for multiphase flows and the averaged conservation
equations for interpenetrating media is that; while the averaging process is
implicit in the mixture theory approach it is an explicit operation in the course
of writing the conservation equations from the interpenetrating, moving phase
boundary approach.

With few exceptions, it is reassuring to note both approaches result in the
same set of conservation equations.

Consider a simple two phase flow. That is one in which the dispersed
phase is a dilute, mono-dispersed suspension of non-reacting, smooth, rigid,
spherical particles in an incompressible, linearly viscous fluid. Both phases and
the surroundings are thermally equilibrated. Laminar flow conditions prevail.



Regardless of the method of formulation, the conservation equations reduce to the
expressions for continuity and balance of momentum [10],[12] and constitute the
continuum equations of motion of the mechanical theory of two phase flow.
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WHERE _ (_,t) : CONCENTRATION

p : MATERIAL DENSITY

V (x,t) :VELOCITY

p (x,t) : SPHERICAL STRESS (PRESSURE)

3" (x,t) : DEVIATORIC STRESS

__ (x,t) : INTERPHASE MOMENTUM EXCHANGE

X (x,t) : SATURATION (CONTACT) PRESSURE

The flow has two velocity fields and two concentration fields. Each phase has a
unique, constant material density and may be acted upon by a set of external
potentials or body forces. In addition, there exists unique expressions for the
spherical and deviatoric elements of the dispersed and continuous phase stress
tensors. Lastly, under the assumption that the flow is saturated, i.e. no phaseless
voids may develop, the phases are coupled by an interface "saturation" pressure
and momentum exchange or transfer between the phases.

If the external potentials are specified, the momentum exchange terms
modeled and the deviatoric elements of the stress tensors specified by constitutive

assumption or neglected via arguments with respect to magnitude, the resulting
is the unclosed system of 9 equations in l0 unknown fields; velocity, concentra-
tion and spherical stress or pressure, for each phase. Commonly, the assumption
of equal phase pressures is used in an effort to create a closed determinant

system of fields and conservation equations [l],[ll]. However, in should be
noted that the wisdom of this assumption has been challenged on both physical

and mathematical grounds [12],[13],[14].

III. Models of Momentum Exchange in Two Phase Flow

As a common denominator, all theories of two phase flow embody some
model for the exchange of momentum between phases. For simple, mechanical

two phase flow it can be demonstrated rigorously that the sum of the interphase
momentum transfer must be conservative, i.e. the sum of all momentum transfer
terms is zero. Those exceptions to this "summing rule" are more a matter of

bookkeeping than conceptual difference [15].



In addition, the degree of coupling between the phases of the flow , both
in a physical and mathematical sense is controlled by the momentum transfer
model. Two way coupling, i.e. momentum transfer from one phase to the other
and vice versa is implicit in the requirement of conservative transfer of momen-

tum. In attempts to simplify the computational complexities associated with
applying continuum theories of two phase flow the assumption of one way cou-
pling is often evoked [16]. One way coupling allows for the transfer of
momentum from the continuous to the dispersed phase, but not vice versa. In
this case the process of momentum exchange is not conservative. Within this

context, one way coupling is synonymous with the statement that the velocity
field of the continuous phase is unchanged due to the presence of the dispersed
phase within the flow. The computational simplifications result from the fact

that it is no longer necessary to solve the conservation equations for the
continuous phase field variables simultaneously with the conservation equations of
the dispersed phase. Given a solution to the continuous phase variable fields,
perhaps generated by single phase analysis or experimental techniques, the
uncoupled conservation equations can be solved for the dispersed phase variable
fields.

The use of a step function to describe the "effectiveness" of momentum

transfer has been proposed and applied to the problem of laminar two phase jet
flows [1],[17]. This approach allows the degree of coupling to vary, step-wise
from uncoupled to one way coupled. The arguments raised are: that in flows

where interparticle spacing in large relative to the sum of the particle diameter
and twice the fluid boundary layer thickness on the surface of the particles no
net momentum transfer between the phases occurs. It is argued that when the
interparticle spacings are large and the suspension is dilute, the slip between the
phases results only in unrecoverable dissipation in the particle wakes. However,
if the multitude of efforts in the analysis of two way coupled, dilute two phase
flows can be used as an indication, then it would appear that the "ineffective-

ness" of interphase momentum transfer in dilute two phase flows is not generally
accepted.

Arguments have been presented for the set of variables which constitute
the general class of admissible momentum exchange functions [3],[18].

(4)

where ... indicates that additional functions, of higher order in gradient, do exist.
S,B,C and L are constructed from the scalar invariants of the admissible vector
and tensor fields. In addition, owing to the discrete nature of the dispersed
phase, the admissibility, as a class of momentum exchange function of gradients
of dispersed phase field variables is still debated [11]. If the existence of
smooth, continuous first partials derivatives to the dispersed phase variables is at
question, consider:. Implicit in the assumption of the continuum model of two

phase flow was that the dispersed phase could be treated as a macro-continua,
i.e. that the dispersed phase field variables are smooth and continuous.



In fact, the use of Divergence (Gauss') theorem in the process of reducing the

global conservation equations to the local form requires the existence of continu-
ous first partial derivatives of dispersed phase velocity and concentration fields.

The appropriateness of using phenomenologically based arguments for the
purpose of identifying the specific forms of the momentum exchange models from
the general admissible class is justified [19]. In fact, more often than not it is
the lack of a phenomenological or physical analogue that results in the neglect of
a class of the admissible momentum exchange functions.

Depending on the purpose of the analysis, four generic categories of
momentum exchange processes and models are identifiable:

-Drag Forces
-Lift Forces

-Inertial Coupling or Virtual Mass Effects
-Inertial History Effects

The arguments for the inclusion of the inertial coupling/virtual mass
effects and inertial history effects are raised during the construction of models
for momentum exchange in two phase flows [1],[20],[21]. The analogous single
particle hydrodynamic forces have been investigated and debated [22],[23],[24],[25].
Inertial coupling stems from the analysis of the forces required to
displace a given volume of fluid during the acceleration of a particle through it.
Likewise, the inertial history or Basset force is linked with the acceleration
history of a particle moving through a quiescent fluid. However, the lack of
complete agreement on the single particle hydrodynamic analysis of these effects
and the lack of agreement on the forms or even the necessity for retaining these
effects [12] in models of momentum exchange in two phase flows precludes them
from additional discussion at this point.

Drag Forces

Common to all theories of two phase flow is a model for momentum

exchange due to drag between the fluid phase and the particles of the dispersed
phase [11],[12],[26],[27],[28]. Intrinsic to each of these models is the existence of a
slip velocity between the phases. The result being a net drag force on each
phase:

_,=-_c= S(V__o_vC) (5)

where the factor of proportionality; S is derived from arguments which are

rooted in single particle analysis.
The most sophisticated models for S are derived from an analysis of the

mean, terminal sedimentation velocities of a dispersion of spheres failing through
a quiescent Newtonian fluid under gravity [11],[12],[29]. The analysis is limited
to flows, about any one single sphere in the Stokesian regime, where the Rey-
nolds number between the fluid and the sphere is of order unity or smaller.

This implies either very small slip velocities and/or a very viscous fluid. The
net result being that the inertia of the fluid phase is neglected.



Equilibrium between the force on a single sphere due to the gravitational poten-
tial and the terminal or steady state sedimentation velocity drag can be given as:

uo= _ (pO_pC)cj (6)

WHERE: a: PARTICLE RADIUS

B: FLUID VISCOSITY

g: GRAVITATIONAL POTENTIAL

This sedimentation velocity potential is modified by the probability of hydrody-
namic interaction with the next closest sphere, where the distance separating these
spheres is defined probabilistically for a uniform dispersion. The result is the
mean sedimentation velocity potential, corrected by the presence of a dispersion
of other spheres of a given concentration:

u - Uo(1- 6.55 _D) (7)

The incorporation of this result into a form for the interphase momentum

exchange in two phase flow due to drag requires the suppositions that:. At a given
slip velocity the potentials acting on each phase due to drag are equal and
opposite, i.e. momentum exchange is conserved. The slip velocity of two phase
flow is then equated with the modified mean sedimentation velocity due to gra-
vity. Resulting in, for a single spherical particle:

2_a (1 - 6.55 _D) (vD_v c) = (pD_pC) g (8)

This result is then further generalized with the assumption that if this is the

potential for interphase momentum exchange due to drag on a single sphere, then
the drag force per unit volume of mixed flow should be simply this potential
normalized by the local volume fraction or concentration of the particulate phase:

i_l_fg= c 9--J_drg = 2_a _D( 1 -I- 6.55 _D){_D vc ) (9)

The caveats are obvious: The single particle analysis is grounded in the
assumption of Stokes flow for the motion or slip of the dispersed phase relative
to the continuous phase. Unlike the slip velocity of two phase flow, the sedi-
mentation velocity at a given concentration is a constant, being the result of a

constant potential; gravity. The modification to the mean sedimentation velocity
by the hydrodynamic interactions with the other particles of the dispersion has
presupposed that the dispersion is uniform, i.e. gradients of dispersed phase
concentration are not present.



Lift Forces

It is observed that certain classes of laminar shear flows will result in

demixing of the dispersed phase [30],[31], i.e. the dispersed phase will become
distributed in a non-uniform manner, despite the fact that initially the flow may
have been homogeneous with respect to dispersed phase concentration. Analysis of
these phenomena have been made using single particle hydrodynamics [32] and

using continuum two phase flow theory with the inclusion of lift forces in the
description of the interphase momentum exchange [11],[12],[15],[16],[33]. It is
generally accepted that the lift forces are those potentials, accounted for within
the interphase momentum exchange which produce dispersed phase motions or

migrations transverse to the slip or velocity difference between the phases. These
lift forces arise through the interaction of the slip velocity, the rotation or spin
of the particles of the dispersed phase and the shearing or gradients of the
continuous phase velocity. If the exchange of momentum between the dispersed
and continuous phase is conserved, then the lift force potentials act equally and

in opposite sense on both phases.
A variety of single particle analysis, with the resulting identification of

certain lift forces have been performed [23],[34],[35],[36],[37],[38]. The lift force

on a single particle, as outlined by Saffman, [35] is the most commonly used in
models of momentum exchange due to lift forces in continuum theories of

demixing two phase flow. Saffman's analysis identifies the lift force:

1/2

vl/2

WHERE v : FLUID KINEMATIC VISCOSITY

u (y) : FLUID VELOCITY (IN PARALLEL FLOW)

Unlike the assumption of Stokes flow used in the analysis of and subsequent

application to momentum exchange due to drag, Saffman's lift analysis begins
with the Navier-Stokes equations. However, the Reynolds numbers for the slip

velocity, the particle spin and the fluid shear are all constrained to order unity
or smaller. Hence, even though the Saffman's analysis retains the inertial terms
of the Navier-Stokes equations, the flow is not inertially dominated. The
solution requires the matching of the "inner" and "outer" asymptotic expansions
of the flow equations in an analysis technique pioneered before numerical
approximation coupled with computational methods became available [39]. In
Saffman's analysis the field variables for the flow about a single sphere are
expanded about the radial position from the sphere center. The inner expansion
has as a boundary condition the no slip requirement at the sphere surface. Since
the sphere is spinning, the no slip boundary condition constrains the fluid to
have the angular velocity of the sphere surface. Hence, the particle spin enters
the calculation implicitly, despite the fact that due to the level of truncation, it
does not appear explicitly in the expression for lift. The necessity for an outer
expansion results from the non-convergent nature of the solutions to the inner
expansion as the distance from the sphere center approaches the infinite.



The outer expansion embodies a second boundary condition, at a some large dis-
tance from the sphere center; namely, the undisturbed (by particles) velocity field
as radial position approaches the infinite. In fact the primary difference in most
single particle analysis of lift is whether the boundary condition for the fluid
velocity field in the outer expansion is constrained by a wall condition [32], a
quiescent fluid [34] or by the rate of fluid strain [35]. The assumptions implicit
in Saffman's analysis of the lift force on a single sphere include: the flow is
uniform and parallel, the slip velocity is parallel to the plane of the fluid shear,
the shear or velocity gradients of the fluid are linear and the particle spin vector
lies in the plane of the fluid shear, but is normal to the slip vector. The

resulting force is normal to the plane of the fluid shear (and slip vector) as well
as being normal to the spin vector of the particle. If, in terms of the slip

velocity, the particle lags behind the fluid the lift will produce a migration of
the particle into the faster, adjacent fluid and vice versa if the particle leads the
fluid. In other words, the sense of the lift force depends on the sense of both
the gradients of the fluid velocity and the slip velocity.

Saffman's result for the lift on a single spherical particle has been
generalized for the analysis of the momentum exchange due to lift forces in
continuum theories of de-mixing two phase flow [11],[12],[15]. The lift force on
the dispersed phase is normalized by the number of particles in a unit volume of
two phase flow. The resulting generalized form of the momentum exchange due
to lift being written:

-1/'2

(11)

This form of the momentum exchange due to lift has been used_ in calculations
of parallel, de-mixing two phase flows using continuum theories. However, it is
not clear that this general form will reduce directly to Saffman's result for a
one dimensional, parallel flow, both in terms of magnitude and the directional
nature of the lift force. In addition, despite the fact that the intentions are well
motivated, the meaning of operations such as absolute value, square root and
division by a second order tensor valued variable is not clear.

IV, Summary

In conclusion, it has been shown that single particle hydrodynamics is the
only source presently used to derive and justify forms for the interphase momen-
tum exchange models within continuum theories of laminar multiphase.

Four generic classes of momentum exchange models can be identified:
Drag, Lift, Inertial or Virtual Mass effects and Inertial History or Basset forces.
The latter two categories are still advent in nature and have not yet assumed a
role in the models of interphase momentum exchange in applications of contin-

uum theories of two phase flow. On the other hand, examples of Drag and Lift
forces in applied momentum exchange models are numerous, though not without
obvious caveats and inconsistencies.

It is encouraging that the requirements of emerging technologies based on
an understanding of multiphase flow processes has motivated such a great deal of
work on generalized models for interphase momentum exchange.
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